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A LINEARIZED THEORY OF VISCO-PLASTICITY

J. B. HADpow

University of Alberta, Canada

Abstract—A linearization of the constitutive equations for an incompressible visco-plastic solid is obtained from
a complementary function based on the Tresca yield condition. The strain rates given by the linearization are
independent of the intermediate principal stress. An analysis of the bending of a simply supported circular plate
is given as an application.

INTRODUCTION

It has been suggested by Hill 1] that the unifying concept in the mechanics of solids is
that of a convex function and in this investigation a convex function, the complementary
function, is used to develop a linearized theory of visco-plasticity. Hill [1] has shown that
extremum principles and uniqueness theorems can be obtained for a solid if two convex
functions, the work function and the complementary function, exist for the solid.

Let 6,; and ¢;; be the components, with respect to rectangular axes Ox;, of the stress and
strain rate tensors respectively. The work and complementary functions are given byt

E = Ja,—,- de;;,
and

E = 'fe,-jdaij,
respectively, and their sum,

E+E. = 0,¢;,

is the rate of energy dissipation per unit volume. The stress and strain rate components are
obtained from E and E, as follows,

O0E 0E, (12, b)
Oij = =—» e; =, a,
where the partial differentiations are with respect to the e;; and o;; each taken as nine
independent variables. If the medium is incompressible E, is independent of oy, and o;
is replaced by the stress deviation s;; in equations (1). According to equation (1b) the vector,
in stress space, that represents the components of strain ratey is parallel to the normal to the
surface of constant E, at the corresponding stress point.

+ The usual summation convention for a repeated letter suffix is used.
} The components of strain rate are multiplied by a scalar constant to obtain the dimensions of stress.
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Simple examples of work and complementary functions are those for the Newtonian
liquid,

I
E ﬂe,'jeij = % (2)
and
_ SisSii _ _J~
<= a1 3)

where I = 2e;e;; and J = (1/2)s;;s;; are invariants of the strain rate and stress deviation
tensors and p is a coefficient of viscosity. The constitutive equations for the Newtonian
liquid may be obtained from (2) or (3) by using (1) are

Sy
;= E,j
Equation (3) is a special case of a complementary function
E = f() )
where f(J) denotes a function of the invariant J. The strain rates obtained from (4) by using
(1b) are :
e; = f'(J)s. (5)

Constitutive equations of the form (5) have been applied to creep problems [2].

In principal stress space, with the principal stresses o, 6, and ¢, taken as rectangular
Cartesian co-ordinates, a surface of constant E, given by (3) or (4} is a circular cylinder with
its axis passing through the origin and with direction cosines [1/(,/3), 1/(y/3), 1/(;/3)].

A Bingham solid [3] has the following constitutive equation for a state of simple shear

stress ,, = G,,,
K
2uey; = (11— )01, (6)
612l

where u is a coefficient of viscosity, K the yield stress in pure shear, and the angle brackets
have the significance,

Ofor F <0

<F>=FforF>0

Prager [4] has generalized equation (6) for arbitrary states of stress, and the solid described
has as limiting cases the von Mises perfectly plastic solid and the Newtonian liquid. This
solid has the following work and complementary functions,

E:%I+K(\/I) if 1#0 (M

and

_ WD -K

E
2u

®)

c
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where K is the yield stress in pure shear for the Mises yield condition. The constitutive
equations obtained from (7) and (8) by using (1) are

5y = z(wﬁ)e,.,. i1 40 o)

VI

1 K
=3 <1_TJ> S (10)

The work function (7) is equal to half the rate of viscous energy dissipation plus the rate of
plastic energy dissipation per unit volume and the complementary function (8) is equal to
half the rate of viscous energy dissipation per unit volume. A surface of constant E, given
by (8)is also a circular cylinder in principal stress space.

and

LINEARIZED THEORY

The yield surface of a Tresca plastic solid is a regular hexagonal prism in principal
stress space and may be regarded as a piecewise linear approximation for the cylindrical
von Mises yield surface. Similarly, families of cylindrical surfaces of constant E, can be
approximated by families of hexagonal prisms obtained from a continuous complementary
function with piecewise continuous derivatives. For example the complementary function
(3) for a Newtonian liquid can be approximated by

Ec = (amnx - amin)z/(6ﬂ) (1 1)

where o, and o,,;, are the maximum and minimum principal stresses. Figure 1 shows the
intersections, in principal stress space, of a plane o5 = const. and surfaces of constant E_,
given by (3) and (11).

2

€_ = CONST. (Ean. 1)

4|

FiG. 1. Surfaces of constant E, for viscous liquid.

Accordingto(1b),if E, is given by (11) and the stress point lies on a flat of the correspond-
ing E, surface, the strain-rate vector in principal stress space is normal to the flat. Conse-
quently if the three principal stresses are distinct,

Cmax = (amax—amin)/(3ﬂ) = — €min> Cint = 0 (123.‘
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where e,,,.. e;,, and e,,,;, are the maximum, inicrmediate and minimum principal components
of strain rate. If the stress point lies on a corner of the corresponding E, surface given by (11),
that is if two of the principal stresses are equal, the strain rate vector in principal stress space
is not uniquely determined and may take any direction in the fan enclosed by the normals
to the two intersecting flats at the corner. The complementary function (11) is equal to
half the rate of energy dissipation per unit volume consequently the strain-rate vector
corresponding to a stress point on a corner of the E, surface must satisfy the requirement
that the rate of energy dissipation per unit volume is the same for all admissible directions
of the strain-rate vector. For example, referring to Fig. 1, the principal components of
strain rate e,, e, and e; corresponding to the stress point B are given by

ey = (o, —0,)'3p)
(1—=1)(o,~03)/(3w) (12b)

€3 = —é;—e,

€2

where ¢ may take any value in the closed interval 0 < ¢t < 1. The approximation (11) for the
complementary function (3) gives strain rates (12) that are not influenced by the intermediate
principal stress and this is a simplification similar to that obtained by adopting the Tresca
yield condition and its associated flow rule for a rigid plastic solid. Venkatraman and Hodge
[5] have used a generalization of the stress—strain rate equations (12) to analyse creep in
circular plates.

Prager [4] has noted that if a Newtonian liquid, a perfectly plastic von Mises solid
and the visco-plastic Bingham solid with constitutive equations (9) and (10) are subjected
to the same strain rate the stress in the Bingham solid is obtained by adding the stresses
in the Newtonian liquid and the Mises solid. A visco-plastic solid such that for a given strain
rate the stress is the sum of the stresses in a Tresca rigid perfectly plastic solid and a viscous
liquid with its complementary function given by (11) is now considered. This visco-plastic
solid has the following complementary function

Ec = <amax_6min—2k>2/(61u) (13)

where k is the yield stress in pure shear for the Tresca yield condition. The complementary
function (13) may be regarded as an approximation for (8). Figure 2 shows the intersections,
in principal stress space, of a plane o3 = const. and surfaces of constant E, given by (8)
and (13). If the stress point lies on a flat of the corresponding E, surface given by (13) the
principal components of strain rate obtained from (1b) are

€max = <Jmax — Omin— 2k>/(3#) = —€min> €int = 0. (143)

If the stress point lies on a corner the strain rates are obtained in the same manner as (12b).
For example, referring to Fig. 2, the principal components of strain rate corresponding to
point B are

e, = 1o, —03—2k>/(3)
e; = (1=1) o2~ 03—2k>/(3p) (14b)
3= —e; —e, ‘

where ¢ may take any value in the closed interval 0 < ¢ < 1. The complementary function
given by (13), like that given by (8), is equal to half the rate of viscous energy dissipation
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Ec= CONST. (Eqn.13)

TRESCA YIELD LOCUS

MISES YIELD LOCUS

1
F1G. 2. Surfaces of constant E, for visco-plastic solid.

-

per unit volume. The rate of energy dissipation per unit volume in terms of the stresses is

(amax - amin)<amax ~ Opmin — 2k>
3u

W, =

and in terms of the strain rates is

W. = 3ple,)? +2kle,|

where |e,,| is the magnitude of the numerically largest principal component of strain rate.
The equation obtained from (14a) for a state of simple shear stress 6, = d,; is

3u k
?elz = <1“|’01—2|>012 . (15)

Equation (15) is of the same form as equation (6), consequently the constitutive equations
(14) are a valid generalization of the constitutive equation of a Bingham solid in simple
shear.

Prager [6] has presented a different linearization of equations (10) which is based on a
piecewise linear yield condition. When the Tresca yield condition is adopted the strain
rates given by Prager’s linearization are not always independent of the intermediate
principal stress, but the constitutive equations of a Newtonian viscous liquid are obtained
as a special case if the yield stress is zero.

BOUNDARY VALUE PROBLEM

Bending of a thin simply supported circular plate with a uniformly distributed transverse
load is considered.

Let r, 6, z be cylindrical co-ordinates with the z-axis directed vertically downwards.
The plate occupies the region —h/2 < z < h/2,0 € r < a, and is loaded with a uniformly
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distributed transverse load of intensity p acting in the z-direction. The equilibrium equation
is

d pr?
Som)y—m,+E =
dr(r ) — Mg+ 3 0 (16)

where M, and M, are the radial and circumferential principal components of bending
moment and the principal curvature rates k, and x, of the middle surface are given byt

. = d?w _ ldw 17a. b
r dr2 s Ko = r a ( a, )
where w 1s the rate of deflection in the z-direction.
Since the plate is simply supported and symmetrically loaded, M, = My > Oatr =0
and the boundary conditions are
d
Mfa)=0, w(@a) =0, d—':(O) =0. (18a, b, c)
Also M,, M,, wand dw/dr are continuous throughout the plate.
Hopkins and Prager [7] have shown that the collapse intensity of loading if a Tresca
rigid perfectly plastic plate is considered is

p__
4 az

where M, = kh?/2. Consequently flow of a visco-plastic plate, with its initial yielding
governed by the Tresca yield condition, occurs if p > p,. Figure 3 shows the yield locus for
such a plate in terms of the principal bending moments M, and M,. When p = p_, for a
Tresca rigid plastic plate, stress regime C-B (Fig. 3) applies for the entire plate with
regime C for the edge r = a and regime B for r = 0. For visco-plastic flow the stress point
lies outside the hexagon ABCDEF and it will be assumed that My, > M, > 0,forp <r <a
and My = M, > 0for 0 < r < p, where p is a radius to be determined. Venkatraman and
Hodge [5] have shown for the corresponding creep problem that this assumption is
justified because of conditions (18a, c) and equation (16) and the reasoning used is also
valid for the visco-plastic problem.

For the stress regimes of interest in the problem the complementary function expressed
in terms of the principal bending moments is

E, = (1120){My— M,>? ifMy, >
>

M, (19)
E. = (120){M,—M>* ifM,>M

[}

where 4 is a coefficient of viscosity. The moment—curvature relations are obtained from
(19) and the flow rule,

OE, _ GE,
- 0= oM,

1 Bending moments and curvatures are assumed positive if they correspond to compression on the surface
z = —h/2.
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F1G. 3. Yield locus for circular plate.

which is the form that (1b) takes when expressed in terms of the principal moments, and are
Ak, =0
ikg = (M¢—M,

Ak, = (l—t)(M,—M())}O <r<p
iKg = t<M9‘—M0>

}psrsa (20a, b)

(21a,b)

where ¢ takes values in the closed interval 0 < t < 1. Atr = p,t = 1 since x, is continuous.
For the following analysis it is assumed that p > p,.
Integration of equation (20a) and condition (18b) give

w = Ala—r) p<r<a (22)

where A is a constant of integration.
Substitution of the curvature rate obtained from equations (17b) and (22) into equation
(20b) results in,

A

If equation (23) is substituted into the equilibrium equation (16) and the resulting equation
is integrated using the boundary condition (18a) the following equation is obtained,

2
9~(%) p<r<a. (24)
-

A 2
+—ln£+&
r a 6

M,. = Mo(l—g
r

Integration of equation (16) with M, = M, gives

pr’
M,=M,,=——4~+B 0<r<p (25)

where B is a constant of integration. Equations (17) and (21) may be expressed in the form
Ad
)'(K9+Kr) = (Mr—'MO) = —-— —-(rfi_w_))
rdrl\ dr
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which, combined with equation (25), gives
Ad[dw pr?
‘;a;(’a?) gt M
and integration and the condition (18c) give
4 2
pr* Br Mor)
———— <r<
(64 4+4 +C O0<r<p (26)

where C is a constant of integration. Since M, and M, are continuous at r = p,

1 AA
—pr2+B = —p~+M0 (27)
and
1 al A4 p pa a pz)
——pp?+B = Mo[1-% |+2%1n 2 c2
i 0( p)+p a"6lp a
consequently
e 2 e
A= (28)
l(l—lng
a

Equations (22), (26), (27) and (28) and the requirement that dw/dr be continuous at r = p
give

B = —a3)——§a3(1 —Ina) 29)

where a = p/a and B = 6M,/pa® = p,/p < 1. For flow of a viscous plate with M, = 0,
B = 0 and o = 0-8056. For a rigid plastic plate, loaded with the collapse load p., f = 1
and o = 0. Consequently 0 < o < 0-8056 for visco-plastic flow.

The following expressions for the moments are obtained from equations (23), (24),
(25), (27) and (28),

_éd g+1
Mo 4 pr p<r<a (30)
M,_(1 a)+3oc3glnr+1a r2)
M, rf 4B8r a Bir a*
9 2 2
M, My 9% 3T 1 o<r<op. (31)

The deflection rates are obtained from equations (22) and (26) and the condition w is
continuous at 7 = p and are

(1-i) p<r<a (32)
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wi 3 r ar?
W=§2~B8a3+;‘;—6—02‘—3a4 0<r$p (33)
Equations (30), (31), (32) and (33) with equation (29) are a solution to the problem and are
in a convenient form for numerical computation. It may be verified that the parameter ¢
in equation (21) lies between 1 atr = pand 0-5atr = 0.
Appleby and Prager [8] solved the problem but used a different flow rule based on the
linearization suggested by Prager [6).

CONCLUDING REMARKS

The theory presented in this paper can be extended to consider Visco-plastic solids
that have the following property. Ifa quasi-linear viscous liquid, a perfectly plastic von Mises
solid, and the visco-plastic solid are subjected to the same strain rate, the stress in the
visco-plastic solid is the sum of the stresses in the quasi-linear liquid and the von Mises
solid. The complementary function and constitutive equations of the quasi-linear liquid
are given by equations (4) and (5), respectively. For the visco-plastic solid the complementary
function is

E. = f(9) (34)

where f(¢) denotes a function of ¢ and ¢ = ((\/J)—K>2 and the constitutive equations
which may be found by applying (1b) are

e; = (1) <1 —%> S (35)

This visco-plastic solid described by equations (35) may be a realistic model for certain
real solids if the function f'is suitably chosen, but the complexity of the constitutive equations
(35), even for the special case with f(¢) = ¢/2u already discussed, makes their application
impractical except for trivial problems. However if the complementary function (34) is
replaced by

Ec = f(¢1)

where

¢l = (1/3)<amax* O min — 2k>2

some non-trivial problems, including the uniformly loaded simply supported plate problem,
can be solved if f is a power function or an exponential function. Venkatraman and Hodge
[5] used a similar theory to analyse creep of circular plates but did not use the concept of
the complementary function. A creep theory can be obtained from a visco-plastic theory
by letting the yield stress be zero.
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Résumé— Une linéarisation des équations d'un solide incompressible visco-plastique est obtenue d’une fonction
complémentaire basée sur la condition de rendement de Tresca. Le taux de déformation est donnée par la
linéarisation et est indépendante du principe intermédiaire de tension. Une analyse de la flexion d’une plaque
circulaire simplement supportée est donnée comme application.

Zusammenfassung—Eine lineare Darstellung der Zustandsgleichungen fiir nichtzusammendriickbare Festkérper
wird erhalten, von der Komplementirfunktion die auf der Tresca’schen Fliessbedingung basiert. Die Spannungs-
werte der linearen Darstellung sind unabhingig von der Zwischenspannung. Eine Analyse der Biegung einer
einfach gestiitzten Platte wird als Anwendungsbeispiel gegeben.

AbcrpakT—Ilony4eHa nuHeapu3alus KOHCTUTYTUBHBIX YPaBHEHUH U HECKUMAEMOTO BA3KO-TLIACTUYHOTO
TBEPAOrO TENA M3 YACTHOrO PpELUEHUS HEONHOPOAHOTO NHHeHHOTO nHbdepeHUHaNbHOTO YypaBHEHHS,
OCHOBaHHOTO Ha ycnoBhM TekyyecTH Tpecka (Tresca). CxopocTu nedopmaniun, NaBaeMple THHeapH3aUHeH-
HE3aBHCMMBI OT TIPOMEXYTOYHOrO IIABHOTO HaBsieHus. AHamu3 wirnbanus ceoboaHo on€proit XpyroBoi
MACTHHBL JACTCS, KaK MPUIIOKEHUE .



